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The parallel between orbital first and second electric moments and statistical first 
and second central moments is noted. Three measures of orbital spatial distribution 
in terms of their moments are proposed, and applied to the LMO's in a series of 
ten-electron hydrides. Consistent differences between bond and lone pair distribu- 
tions are found. Using the statistical interpretation, for each LMO an "effective" 
solid angle around the central atom is postulated. 
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1. Introduction 

As is well known, single-determinantal wavefunctions of closed-shell atomic and molec- 
ular electronic eigenstates are invariant (except for a phase factor of modulus unity) 
under any unitary transformation of the orbitals. The transformation can be chosen 
to obtain localized molecular orbitals (LMO) from the canonical (CMO) set. A number 
of localization procedures have been proposed, differing only in the particular energetic 
or spatial criterion of localization chosen [1-5]. 

All the methods yield comparable results. Each LMO density is found to be relatively 
concentrated in some spatial region (but see [6] ), and is expected to be determined 
mainly by that part (subsystem) of the molecule which occupies the given region plus 
its near environment, rather than by the whole system. As a consequence, the descrip- 
tion of molecular electronic structure in terms of LMO's has several advantages: 

1. The LMO's can be used to connect the orbital description with classical chemical 
concepts: bonds, unshared pairs and the like. 

2. The comparison of the electronic structure of chemically related molecules is easier 
in the localized one-particle model because chemically identifiable structural units 
(functional groups) may be consistently described by more or less identical LMO's. 

3. The LMO's of structurally related systems may be transferable, to a certain approxi- 
mation, from one molecule to another. This makes it possible to use LMO's calcu- 
lated for small molecules as building blocks in preliminary investigations of larger 
systems. 
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4. For extended systems, the localized description may be a better starting point if one 
wants to go beyond the independent-particle approximation. 

The use of first and second moments of LMO densities for their characterization was 
introduced by Robb et al. [7]. A detailed analysis of the LMO's for a series of ten- 
electron systems has been done via a variant of their moment ellipsoid model [8]. In 
the present paper we investigate the further possibility of using the orbital first and second 
moments to characterize LMO's in statistical terms, through further analysis of the cal- 
culations on these molecules. 

2. Characterization of Localized Orbitals by the First and Second Moments of  Their 
Charge Distribution 

The charge distributions of LMO's can be expressed in terms of their moments to any 
desired accuracy using the (infinite-order) multipole expansion technique. 

The three first moments of the ith LMO, $i: 

(u)i=(r162 u = x , y , z  (1) 

where x, y, z are the spatial coordinates of  the electron, are the components of  the 
orbital centroid-of-charge vector, (r)i. The origin of (r)i is (conventionally) chosen at 
the nucleus of  the central atom. The absolute value of(r}i is called the centroid length 
and denoted by (r) i. 

The second moments are defined as: 

( U t , ) ? = ( O i l b l V [ ~ i ) ,  bt, V =x , y , z .  (2) 

As they depend on the origin of the coordinate system, we choose the explicit definition: 

(Uv)i = (q~/l[U - (U)/] [v -(v)i][Oi) , u,v = x , y , z  (3) 

where the origin is taken to be the centroid-of-charge of the corresponding LMO. The 
higher moments can be defined in a similar way. 

Expressions (3) are the components of a symmetrical second-order tensor which can be 
brought to diagonal form by a suitable rotation of the coordinate axes. The tensor is 
characterized by the diagonal elements (eigenvalues) (x  'z ), (y,2), (z,2) of its diagonal 
form, and by the directions of the new coordinate axes. 

These moments of a charge distribution can be related to the statistical moments of 
random variables. The orbital centroid vector is formally identical to the central first 
moment M(~) of a random variable ~ with density function p(x): 

M(~) = f xp(x) dx. (4) 

Similarly, the definition of each diagonal element of the orbital second-moment tensor 
(3) is formally identical to that of the statistical central second moment, rn 2 : 

m= =D2(~) = f p(x)[x -M(,~)] z dx (5) 

where D(~) is the standard deviation of ~ [9]. 



Moment Characterization of Localized Orbitals 177 

It is well known that for the standard deviation, D(~), the following inequality holds 
(Bienaym6-Chebyshev theorem): 

P(I~ - M(~)l > XD) ~ < ~ ,  X > 1. (6) 

The expression on the left-hand side denotes the probability that [ ~ - M(~)I is larger 
than X times the standard deviation. If we take X = 2 as an example, then according to 
(6), the probability that ~ lies within the range -2D(~) ~< ~ ~< 2D(~) is at least 0.75. 
For 0 ~ X ~< 1 the inequality remains valid but becomes trivial. When the probability 
function is Gaussian, 

P([~ - M(~) I > D )  = 0.3174. 

Although inequality (6)is not very "sharp", it still gives some limiting value of the 
dispersion of random variable ~, without knowing its distribution function explicitly. 
The same relation applies to the eigenvalues (x 'z )i, (y,2)i, (z'2)i of the LMO second- 
moment tensor, which are thus analogues of the statistical squared standard deviations. 
Hence, in principle the main features of the spatial extension of LMO's can be described 
by the first and second moments of their charge distribution. Depending on the infor- 
mation desired, more detailed knowledge may not be necessary. 

3. Features of LMO First and Second Moments of Some Neutral Ten-Electron 
Systems 

In all the calculations referred to in this paper, basis sets of (13s7p/4s) Gaussians con- 
tracted to [4s2p/2s] have been used. The bond distances and angles were fixed at the 
experimental equilibrium values of the neutral species [10]. Further details on the 
SCF, orbital localization and moment calculations may be found in [8] and [11]. 

3.1. First Moments 

In all systems investigated, the length of the centroid vector, (r), was found to be larger 
for the bond pair LMO's than for the lone pair LMO's; their ratio is 1.61 for NH 3, and 
1.60 for H20 and HF. For systems of Czv and C3v symmetry, the centroid vectors of 
the bond LMO's do not point exactly towards the protons. However, the deviation is 
small: 0.6 ~ for. H20 and 0.3 ~ for NH3, the angle between the centroid vectors being 
smaller than the corresponding valence angle in both cases. The angles between the 
three combinations of bond and lone pair centroid vectors are given in Table 1 (first 
part). It can be seen that the angles between two lone pair centroid vectors are con- 
sistently larger than between bond pair LMO vectors. 

3.2. Second Moments 

As noted above, the data contained in the LMO second-moment tensor is summarized 
in the three square roots of  the eigenvalues, (x '2 ), (y,2), (z,2), of its diagonal form, 
identifiable as probability dispersions in the direction of the three axes, x ' ,  y ' ,  z', of the 
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Table 1. Characteristic angles (in degrees) of LMO first and second moments for a neutral series of 
ten-electron hydrides a 

Angles Between the Centroid Vectors 
Deviation of the Major Dispersion 
Axis From the Centroid Vector 

Bond-Bond Bond-Lone Lone--Lone Bond Lone 

Ne - - 109.48 - 0.0 
HF - 105.8 112.9 0.0 6.4 
H20 103.3 108.8 117.6 2.4 8.5 
NH3 106.1 112.7 - 3.2 0.0 
CH4 109.48 - - 0.0 - 

a Valence bond angles: H20 (104.52), NH3 (106.69). 

rotated coordinate system required. For all molecules investigated, the eigenvalues were 
found to be doubly degenerate. In the symmetrical cases (all LMO's in Ne and CH4, 

lone pair LMO in NH 3, and bond pair LMO in HF) the two minor values (denoted by 
(y,2)1/2 and (z '2)1/2) are equal to the accuracy of the orbital expansions. In all other 

cases (all LMO's in H20, bond pair LMO's in NH3, and lone pair LMO's in HF) the 

relative difference between the two minor axes is at most 0.5%. The unique axis (x') 
of larger eigenvalue ((x'  2)) coincides with the corresponding centroid vector only in 

the symmetrical cases. In all other cases, x '  makes a non-zero angle with the centroid 

vector. This angle of deviation is largest for lone pair LMO's, but  smaller than 10 ~ in 

all cases (see Table 1, second part). The deviation angles, of the centroid vector, and of 
the principle dispersion axis, from the internuclear bond axes were consistently found 

to be of opposite sign. 

In addition to the centroid length, by combining first- and second-moment data one can 
introduce three quantities characteristic of the various types (bond, lone pair) of LMO. 
One is the ratio of  major and minor dispersions, ~c '2 )/1/2/(y,2 )]/2, which describes the 

deformation of the LMO from sphericity about its centroid. These values for the neutral 

species are given in Table 2 (second column). 

Table 2. Characteristic measures of LMO first and second moments for a neutral series of ten- 
electron hydrides 

Major/Minor Effective Solid 
Centroid Length Dispersion Ratio Asymmetry Angle 
(in a.u.) (r> (x '2 ) l /2 / (y '2 )  1//2 (r)/(x '2) 1/2 (in steradians) 

Bond Lone Bond Lone Bond Lone Bond Lone 

Ne - 0.435 - 1.272 - 0.693 - 2.124 
HF 0.831 0.521 1.496 1.242 0.930 0.709 1.181 2.131 
H20 0.978 0.605 1.446 1.250 1.016 0.721 1.090 2.097 
NH3 1.148 0.71.3 1.385 1.221 1.117 0.750 1.007 2.038 
CIt4 1.361 - 1.337 - 1.215 - 0.930 - 
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Fig. 1. Definit ion of  the  effective solid angle for a valence 
shell orbital. The heavy a tom is indicated by  a filled circle, 
the orbital centxoid by  a cross 

�9 . ,2 >:/2 The second is the ratio of centroid length to major dispersion, ( r i ) / ( x  , the 
"asymmetry" of the LMO with respect to the central atom. When this ratio is zero, the 
orbital is symmetric (in the x'-direction) about the heavy atom, whatever the diffuseness 
of its density (measured by (x '2 )1/2). As the ratio increases, the orbital is characterized 
as having the principal amount of its density (roughly between +-(x '2 )~/2 of its centroid) 
further from the heavy atom, which is not given by ( r )  i alone. 

Thirdly, in accordance with the meaning of the central second moments in probability 
theory (Sect. 2), one can define an "effective" orbial solid angle: the angular space 
around the central atom occupied predominantly by some one of the valence LMO's. 
As the deviation of the major dispersion axis from the corresponding centroid vector 
has been found to be less than 10 ~ in the examples studied, the effective solid angle can 
be identified, approximately, with the solid angle subtended by a cone of semivertex 
angle arctan [(y,2)/1/2/(r)i] ' with vertex at the central nucleus and rotation axis in the 
direction of the centroid vector (see Fig. 1). 

Taking into account the statistical meaning of the standard deviation, it should be 
emphasized that it is rather the relative magnitude, and not the absolute value, of the 

�9 . P 

effective angle which is important. In the case of tile H2 0 molecule, the computed 
effective solid angles of its four valence LMO's are shown in Fig. 2a; the case of the 
NH a molecule is given in Fig. 2b. It can be seen that larger angular spaces are taken up 
by the lone pair LMO's than by the bonds. The effective solid angles for the neutral 
species studied are given in Table 2 (fourth column). 

4. The Influence of Changes in Nuclear Charges on LMO Second Moments 

As has been shown [6, 7],  changes in the nuclear charges bring about systematic modi- 
fications in the distribution of the LMO densities, which are reflected also in their first 
and second moments. 

On increasing the charge of the central nucleus and/or the number of protons, the total 
electronic cloud of the system contracts�9 Consistent with this observation, the measures 
of the radial spatial extensions of the component LMO's are also found to decrease. 
This variation in the centroid lengths for bond and lone pair LMO's for 02 - -~ H402+ 
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Fig. 2a. Effective solid angles for the 
LMO's of the H20 molecule. The 
upper cones represent the lone, the 
lower ones the bond pair LMO's 
respectively 

i A,U, 

Fig. 2b. Spatial relation of valence orbital 
effective angles around the heavy atom 
in NH3 (fourth cone, projecting behind 
the plane of the figure at lower left, not 
shown for clarity) 

is shown in Fig. 3. For the neutral species, the corresponding values can be found in 
Table 2. 

However, the rates of change of the individual components of the first and second 
moments are not uniform. So their various ratios may not  vary monotonically for 
either the bond or lone pair LMO series. In Figs. 4 to 6 are shown the changes (with 
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Fig. 3. Centroid length, <r), (in a.u.) for bond 
and lone pair LMO's in the molecular series 
02----> H4 02+ 

increasing number of protons) of the characteristic properties proposed in Sect. 3, 
for the series 02 - ~ H402+. The corresponding values for the neutral systems are 
given in Table 2. 

The ratio of the dispersions, (x '2)]/2/(y,2 )y2, is given in Fig. 4. With increasing number 
of protons, this ratio decreases from 1.49 to 1.38 for bond pairs, and slowly increases 
from 1.23 to 1.26 for lone pairs. The gap between these ranges clearly differentiates 
the more spherical (around the centroid) lone pairs from the bond orbitals. 

The asymmetry of the orbitals, (r)i/(X '2 )1/2, decreases with increasing protonation 
within both bond (1.07 to 0.93) and lone pair (0.75 to 0.72) LMO series (see Fig. 5). 
The gap between the bond and lone pair ranges clearly illustrates the greater net 
displacement of the bond density from the central atom. 

Finally, the effective solid angle changes very little for lone pair LMO's, varying between 
2.03 and 2.10 steradians, but increases appreciably for bond LMO's from 0.97 to 1.33 
steradians (see Fig. 6). Again there is a significant gap between bond and lone pair 
ranges. The consistently larger lone pair angle computed parallels the similar well known 
hypothesis of the VSEPR model of molecular structure [12]. 

These patterns of variation of the three proposed measures also hold for the C, N, F and 
Ne protonation series definable from the ensemble of ten-electron molecules studied. The 
gap between bond and lone pair ranges for each property persists in the neutral series 
of molecules as well (Table 2). 
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5. Conclusions 

The parallel between orbital  first and second electric moments  and the statistical first 

and second central moments  of  random variables is underlined. 

Three measures o f  orbital  spatial distribution proposed here are shown to reveal con- 

sistent characteristic differences between bond  and lone pair LMO's in a sample series 
of  ten-electron hydrides. The empirical VSEPR model lone-bond subtended orbital  
angle postulate is shown to have a parallel in the statistical interpretat ion of  LMO 
charge densities. The three measures together may yield a useful fashion o f  summarizing 
the information on molecular electronic structure provided by  the LMO description. 

It would be interesting to investigate the variation of  these characteristics for extended 

systems, e.g. CH3-CH3, CH3=NH2, CH3-OH , etc. This will form the subject of  
further study. 
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